NANOTECHNOLOGY AS A STRATEGY TO REDUCE CISPLATIN NEPHROROXICITY

DOI

https://doi.org/10.47820/recima21.v6i6.6505

Downloads

PDF (Portuguese)

Abstract

Cisplatin is a widely used chemotherapeutic agent in the treatment of various solid tumors; however, its clinical application is limited by significant adverse effects, especially nephrotoxicity. This study aimed to review the scientific literature on the use of nanoparticles as a strategy to reduce cisplatin-induced renal toxicity. This is a bibliographic review based on experimental, clinical, and review studies retrieved from indexed databases such as PubMed, Scopus, Web of Science, and ScienceDirect, covering the period from 2011 to 2025. Twenty articles were included, addressing formulations such as AuNPs, ZnO-NPs, CeO₂-NPs, honokiol, urolithin A, cisplatin micelles (NC-6004), and siRNA-based systems. The main mechanisms involved include controlled drug release, antioxidant action, inflammatory modulation, and inhibition of apoptotic pathways. Thus, nanotechnology presents relevant potential as a tool to reduce nephrotoxicity and enhance the safety of cisplatin-based chemotherapy.

Author Biographies

Hudson Sousa Silva

UNICEPLAC – Centro Universitário do Planalto Central Apparecido dos Santos.

 

Maria Amélia Albergaria Estrela

Doutora e mestre em Química Analítica pela Universidade de Brasília (UnB), com especialização em Vigilância Sanitária pela PUC Goiás. Professora do ensino superior no UNICEPLAC.  Editora da Revista de Saúde e membro do Núcleo de Qualidade e do Grupo de Pesquisa da instituição. 

References

ABDEL-HAMID, A. L. M.; ELKADY, G. R. A nano based approach to alleviate cisplatin induced nephrotoxicity. International Journal of Immunopathology and Pharmacology, v. 35, 2021. Disponível em: https://doi.org/10.1177/03946320211001734 Acesso em: 28 abr. 2025.

AYDIN, E.; CEBECI, A.; LEKESIZCAN, A. Prevention of cisplatin-induced nephrotoxicity by kidney-targeted siRNA administration. International Journal of Pharmaceutics, v. 628, p. 122268, 2022. Disponível em: https://doi.org/10.1016/j.ijpharm.2022.122268 Acesso em: 1 maio 2025.

DASARI, S.; TCHOUNWOU, P. B. Cisplatina na terapia do câncer: mecanismos moleculares de ação. European Journal of Pharmacology, v. 740, p. 364–378, 2014. Disponível em: https://doi.org/10.1016/j.ejphar.2014.07.025 Acesso em: 12 maio 2025.

DAVOUDI, M. et al. Enhanced effects of polymeric and metallic nanoparticles in cisplatin-induced nephrotoxicity: a review of 2011–2022. Journal of Nanobiotechnology, v. 20, p. 504, 2022. Disponível em: https://doi.org/10.1186/s12951-022-01718-w Acesso em: 31 mar. 2025.

FAROOQ, M. A. et al. Progresso recente em novos sistemas de liberação de medicamentos baseados em nanotecnologia com cisplatina para terapia do câncer: uma revisão. Artificial Cells, Nanomedicine, and Biotechnology, v. 47, n. 1, p. 1674–1692, 2019. Disponível em: https://doi.org/10.1080/21691401.2019.1604535 Acesso em: 10 maio 2025.

GHEORGHE-CETEAN, S. et al. Platinum derivatives: a multidisciplinary approach. Journal of B.U.ON., v. 22, n. 3, p. 568–577, 2017. Disponível em: https://pubmed.ncbi.nlm.nih.gov/28730758 Acesso em: 31 mar. 2025.

JIMÉNEZ-TRIANA, C. A. et al. Cisplatin nephrotoxicity and longitudinal growth in children with solid tumors: a retrospective cohort study. Medicine, v. 94, n. 34, p. e1413, 2015. Disponível em: https://doi.org/10.1097/MD.0000000000001413 Acesso em: 31 mar. 2025.

KUMAR, M. N. V. U. Nanoparticle therapy for cisplatin-induced acute kidney injury. Nephron, v. 147, n. 1, p. 3–5, 2023. Disponível em: https://doi.org/10.1159/000525364 Acesso em: 9 maio 2025.

KUMAR, R.; KUMAR, A.; KUMAR, V.; BHUSHAN, B. Nanoparticle-based drug delivery systems for treatment of cisplatin-induced nephrotoxicity. International Journal of Pharmaceutics, v. 576, p. 118990, 2020. Disponível em: https://doi.org/10.1016/j.ijpharm.2019.118990 Acesso em: 8 maio 2025.

KUSHWAHA, S. K. S.; CHAUHAN, D. S.; KUSHWAHA, D. Nanotechnology based approaches for combating cisplatin-induced nephrotoxicity. Asian Journal of Pharmaceutical and Clinical Research, v. 12, n. 6, p. 9–16, 2019. Disponível em: https://doi.org/10.22159/ajpcr.2019.v12i6.32074 Acesso em: 8 maio 2025.

LAZULI, Z. et al. Genetic variations and cisplatin nephrotoxicity: a systematic review. Frontiers in Pharmacology, v. 9, p. 1111, 2018. Disponível em: https://doi.org/10.3389/fphar.2018.01111 Acesso em: 31 mar. 2025.

LIMA, A. A. de. Síntese, avaliação da atividade antiproliferativa e estudo da interação frente ao DNA de um composto de prata contendo a tiossemicarbazona derivada da istatina. 2022. Dissertação (Mestrado) – Universidade Estadual Paulista “Júlio de Mesquita Filho”, Araraquara, 2022. Disponível em: https://repositorio.unesp.br/handle/11449/213544 Acesso em: 31 mar. 2025.

LIU, H.-T. et al. Nanoparticulated honokiol mitigates cisplatin-induced chronic kidney injury by maintaining mitochondrial antioxidant capacity and reducing caspase-3-associated apoptosis. Antioxidants, v. 8, n. 10, p. 466, 2019. Disponível em: https://doi.org/10.3390/antiox8100466 Acesso em: 16 maio 2025.

MAJD, N. E. et al. Effects of nano and green zinc oxide on histological changes, oxidative stress and apoptosis in cisplatin-associated rat kidney. Revista Brasileira de Ciências Farmacêuticas, v. 59, p. e20960, 2023. Disponível em: https://doi.org/10.1590/s2175-979020220001.e20960 Acesso em: 2 maio 2025.

MARTINS, M. G. Encapsulamento de nanopartículas magnéticas em polímeros acrílicos e avaliação de hipertermia para potencial tratamento de câncer. 2017. Dissertação (Mestrado em Engenharia de Materiais) – Universidade Federal do Rio de Janeiro, Rio de Janeiro, 2017. Disponível em: https://pantheon.ufrj.br/handle/11422/8462 Acesso em: 31 mar. 2025.

MOTIEI, M. et al. Recent progress in nanotechnology-based novel drug delivery systems in designing of cisplatin for cancer therapy: an overview. Nanobiotechnology, v. 8, p. 102, 2019. Disponível em: https://www.tandfonline.com/doi/full/10.1080/21691401.2019.1604535 Acesso em: 13 maio 2025.

POUR MADADI, M. et al. Nanoformulações carregadas com cisplatina para terapia do câncer: uma revisão abrangente. Journal of Drug Delivery Science and Technology, v. 77, p. 103928, 2022. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S1773224722008395 Acesso em: 9 maio 2025.

RODRIGUES, F. A. M. Biomateriais porosos nanoestruturados à base de polissacarídeos de Spondias purpurea L. e Calotropis procera para sistemas de liberação local de oncocalixona A. 2024. Dissertação (Mestrado) – Universidade Federal do Ceará, Fortaleza, 2024. Disponível em: https://repositorio.ufc.br/handle/riufc/76323 Acesso em: 3 maio 2025.

SANTOS FRANCO, C. et al. Nanotecnologia para direcionamento de substâncias ativas para o tratamento do câncer de mama: uma abordagem promissora. Revista Atenas Higeia, v. 7, n. 1, 2025. Disponível em: https://revistas.atenas.edu.br/higeia/article/view/503 Acesso em: 9 maio 2025.

SHARON, Y. et al. A 'golden' alternative for prevention of cisplatin nephrotoxicity in bladder cancer. BMC Nephrology, v. 24, p. 118, 2023. Disponível em: https://doi.org/10.1186/s12645-023-00221-7 Acesso em: 13 maio 2025.

SUBBIAH, V. et al. Ensaio de fase Ib/II com NC-6004 (cisplatina nanopartícula) mais gemcitabina em pacientes com tumores sólidos avançados. Clinical Cancer Research, v. 24, n. 1, p. 43–51, 2018. Disponível em: https://doi.org/10.1158/1078-0432.CCR-17-1114 Acesso em: 12 maio 2025.

VEIGA, M. S. C. et al. Estudo dos mecanismos de morte induzidos pelo complexo de rutênio HMxBATO com atividade contra Leishmania amazonensis e células tumorais A549. 2020. Trabalho de Conclusão de Curso (Graduação em Farmácia) – Universidade Federal de Uberlândia, Uberlândia, 2020. Disponível em: https://repositorio.ufu.br/handle/123456789/29905 Acesso em: 8 abr. 2025.

WENG, Q. et al. Catalytic activity tunable ceria nanoparticles prevent chemotherapy-induced acute kidney injury without interference with chemotherapeutics. Nature Communications, v. 12, n. 1, p. 1436, 2021. Disponível em: https://www.nature.com/articles/s41467-021-21714-2 Acesso em: 5 maio 2025.

ZEE, A.-H. Genetic variations and cisplatin nephrotoxicity: a systematic review. Frontiers in Pharmacology, v. 9, p. 1111, 2018. Disponível em: https://doi.org/10.3389/fphar.2018.01111 Acesso em: 13 maio 2025.

ZHANG, X. et al. Exossomos destacam direções futuras no tratamento da lesão renal aguda. International Journal of Molecular Sciences, v. 24, n. 21, p. 15568, 2023. Disponível em: https://doi.org/10.3390/ijms242115568 Acesso em: 8 maio 2025.

How to Cite

Sousa Silva, H., & Amélia Albergaria Estrela, M. . (2025). NANOTECHNOLOGY AS A STRATEGY TO REDUCE CISPLATIN NEPHROROXICITY. RECIMA21 - Revista Científica Multidisciplinar - ISSN 2675-6218, 6(6), e666505. https://doi.org/10.47820/recima21.v6i6.6505